top of page

University of Ljubljana

University of Ljubljana




University of Ljubljana is the oldest and largest higher education and scientific research institution in Slovenia. University with its rich tradition was founded in 1919. It has approximately 41,000 undergraduate and postgraduate students and employs approximately 6,000 higher education teachers, researchers, assistants and administrative staff in 23 faculties and three arts academies. The central building, all three academies and faculties are located in the centre. Some of the most recent and modern buildings were constructed on the outskirts of Ljubljana, giving the university and its students a ubiquitous presence in the city.

The University of Ljubljana is renowned for its quality social and natural sciences and technical study programmes, structured in accordance with the Bologna Declaration. Our projects keep pace with the latest developments in the areas of arts, sciences and technology at home and abroad.

The University of Ljubljana has been ranked among the top 600 universities by the prestigious Academic Ranking of World Universities (ARWU); it is placed 374th in The Center for World University Rankings (CWUR), listed in the 801-1000 group in the Times Higher Education (THE) ranking, and the 601-650 group in the Quacquarelli Symonds ranking.

The University of Ljubljana is the central and largest educational institution in Slovenia. It is also the central and largest research institution in Slovenia with 30 percent of all registered researchers (according to the data from the SICRIS database).

The University takes a central pedagogical position by performing public services in the areas of special social importance which ensure the preservation of the national identity.

The University of Ljubljana has close ties with Slovenian companies and foreign enterprises. Our partners include multinational corporations and the most successful Slovenian companies. As we are fully aware of the importance of knowledge and skills in obtaining our own financial sources, we are increasingly developing our market oriented activities every year.




Stay up to date with FISITA Spotlight

More Blogs Item Title

Excerpt from the blog goes here - this will give the reader a brief snapshot of what the post is about...

16 July 2021


See FISITA Library items from University of Ljubljana


Paper + Video + Slides


Dipl.-Ing. Severin Huemer-Kals, TU Graz, AUSTRIA

Prof. Jurij Prezelj, University of Ljubljana, SLOVENIA

Mr. Máté Tóth, TU Graz, AUSTRIA

Dipl.-Ing. Dominik Angerer, TU Graz, AUSTRIA

Dipl.-Ing. Manuel Pürscher, TU Graz, AUSTRIA

Mr. Federico Coren, TU Graz, AUSTRIA

Mr. Martin Zacharczuk, Mercedes-Benz AG, GERMANY

The nature of friction within a vehicle’s disk brake system can cause a wide range of different noise phenomena. Especially high-frequency brake squeal was examined during the last decades. Numerous publications treat squeal phenomenology and its mitigation. Increasing shares of electrified powertrains, automatic driving functions such as park assists and further increasing quality demands have now shifted the research interest more and more towards low-frequency phenomena.

One of these low-frequency phenomena is creep groan. Defined by its main frequency below 200 Hz, creep groan is characterized by a highly non-linear behavior: Global stick-slip transitions in the disk/pad contacts repeatedly excite the whole brake and axle system. Different bifurcations or even chaotic behavior occur.

To ensure good creep groan behavior, defined assessment procedures and rating criteria are necessary. Currently, the German Association of the Automotive Industry recommends a combined rating via the subjective perception of trained test drivers and the objective, A-weighted sound pressure level. This practice could be improved with a more sophisticated objective rating: By considering the human perception, objective and subjective ratings would correlate even better.

One possible approach towards an enhanced objective creep groan rating could therefore use psychoacoustic metrics. In 2009, this idea was formulated for the psychoacoustic loudness and the tonality of creep groan by Abdelhamid and Bray.

The present work seizes this suggestion and provides additional psychoacoustic evaluations of full-vehicle creep groan signals. Based on measured accelerometer signals, a novel procedure for the psychoacoustic evaluation of structure-borne noise was applied: Optimized FIR filter transfer functions were used to compute equivalent sound pressure signals from the accelerometer data, with the equivalent signals resembling the measured signals but lacking unwanted noise. Both the measured and the simulated signal were then evaluated and compared regarding their psychoacoustic behavior.

Results reveal the value of the equivalent sound pressure signal: Whereas loudness and sharpness were found very similar and tonality rather arbitrary for both measured and equivalent sound pressure signal, roughness and fluctuation strength showed strong differences between the signals: Here, only the accelerometer-based, equivalent sound pressure provided easily interpretable characteristics. The proposed method also compared psychoacoustic characteristics for different creep groan bifurcations.

Possible applications comprise an enhanced objective rating of low-frequency noise phenomena, the detection and classification of creep groan bifurcations, or the possibility to estimate creep groan cabin noise based on simulative results during early development stages. Therefore, this study provides another step towards silent automotive brake technology.

EuroBrake 2021




The Psychoacoustic Characteristics of Non-Linear Automotive Disk Brake Creep Groan: a Method Based on Accelerometer Data, EB2021-STP-011, EuroBrake 2021

Error message goes here.

bottom of page