Safe decision-making is critical for autonomous driving. Reinforcement learning (RL) algorithms aim to identify the values of behaviors in various situations and thus they become a promising pathway to address the decision-making problem. However, poor runtime safety hinders RL-based decision-making strategies from complex driving tasks in practice. To address this problem, human demonstrations are incorporated into the RL-based decision-making strategy in this paper. Decisions made by human subjects in a driving simulator are treated as safe demonstrations, which are stored into the replay buffer and then utilized to enhance the training process of RL. A complex lane change task in an off-ramp scenario is established to examine the performance of the developed strategy. Simulation results suggest that human demonstrations can effectively improve the safety of decisions of RL. And the proposed strategy surpasses other existing learning-based decision-making strategies with respect to multiple driving performances.
Safe decision-making for autonomous vehicles via human-guided reinforcement learning
EB2012-IBC-004 • Paper • EuroBrake 2012 • IBC
Upgrade your ICC subscription to access all Library items.
Congratulations! Your ICC subscription gives you complete access to the FISITA Library.
Retrieving info...
Available for purchase on the FISITA Store
OR