Research and/or Engineering Question/Objective:
The fine dust contribution (<10µm) of motor vehicles represents a considerable health risk for people in urban areas. Due to an increasing percentage of electric vehicles, exhaust emissions are steadily reduced. Consequently, particles from non-exhaust sources (brake, tire and road ware) are considered to be the future main vehicle related pollutant. While regenerative braking, tungsten carbide coatings and filter devices can effectively reduce brake wear emissions, there is currently no methodology available in order to reduce tire wear particles, road abrasion and resuspension. In addition, the tire is one of the main sources of environmental microplastic pollution. Although there are initial approaches to determine the emission characteristics of tire and road ware particles, there is a lack of basic understanding of the underlying physical processes.
Methodology:
The particle flow around the vehicle wheelhouse is dominated by highly dynamic vortex structures. The numerical flow simulation (CFD) is a well suited tool for the investigation of these processes and allows a detailed analysis of the particle-flow interaction. Within this paper, a CFD flow model of a vehicle wheelhouse is presented, which analytically describes the underlying physical effects of particle dispersion by the vehicle tire. The CFD model was applied in order to define a suitable measurement strategy for the measurement of TRW particles based on a measurement vehicle.
Results:
In order to develop a CFD Modell for tire-induced particle emissions, comprehensive analysis of mesh generation, geometric influencing factors and turbulence models was conducted. An essential element of the presented model is the modelling of the wheel rotation, tire-road contact and tire-profile related effects. In addition, particle models were adapted according to the physical properties of tire and road wear particles. In a second step, the CFD methodology was applied in order to design a constant volume sampling system (CVS) which ensures a maximum sampling and transport efficiency for TRW particles.
Limitations of this study:
In general, numerical simulation requires strong simplification of the physical problem and can cover aspects of the flow and particle behavior only partially. Thus, more experiments are necessary to fully validate the CFD model.
What does the paper offer that is new in the field in comparison to other works of the author:
The paper offers a new CFD-based tire and road wear model including flow processes in proximity to the tire-road interface, in order to describe tire induced particle emissions.
Conclusion:
Within this paper a novel CFD-based methodology is presented whereby special emphasis was placed towards the modelling of tire-induced particle emissions. This model was applied in order to design a constant volume sampling system that ensures a maximum sampling as well as transport efficiency for TRW particle measurement.
KEYWORDS - Tire and Road Wear Particles (TRW), Particle Resuspension, Non-Exhaust-Emissions, Computational Fluid Dynamics (CFD), Constant Volume Sampling System (CVS)
Mr. Toni Feißel, TU Ilmenau, GERMANY; Prof. Dr.-Ing. Klaus Augsburg, TU Ilmenau, GERMANY
Analytical Investigation of Tire Induced Particle Emissions
F2020-EPV-027 • Paper + Video • FISITA Web Congress 2020 • Emissions and Pollutants Caused by Vehicles (EPV)
Upgrade your ICC subscription to access all Library items.
Congratulations! Your ICC subscription gives you complete access to the FISITA Library.
Retrieving info...
Available for purchase on the FISITA Store
OR