top of page

Country

Mr. John Smith

Job title

Company

People

The brake pad is a crucial part of the brake and together with its friction couple, mostly, dictates the brake’s characteristics. Nowadays, brakes shall be, among other requirements, performant, simultaneously NVH-optimized, durable, inexpensive and environmentally friendly. The task of the friction couple is to unify these partly contradicting requirements. But the friction material often is considered as a black-box as it is a multi-substance mixture with dozens of raw materials. Interactions between those ingredients and their effect on the required properties are not fully understood. It is expected that there will be a shift in brake (pad) requirements for future vehicle concepts. Electrification, autonomous driving, digitalization, and environmental requirements bring new brake (pad) requirements already today. Friction stability, corrosion and particle emissions are just a few of the new emerging demands. How can requirements specifically for future mobility be covered by suitable brake pad material concepts? In this study, first, a comprehensive overview of future mobility is presented, and future requirements are derived with a top-down approach. Coming from general vehicle requirements of future mobility concepts, friction couple requirements are deducted, and a set of targeted prioritized properties is discussed. In cooperation with suppliers, raw material classes are categorized regarding which properties they cause in the brake pad. Additionally, test specifications are re-designed towards the found new mobility scenarios. The desired prioritized target properties are then tested prototypically for their fulfilment.



Volkswagen AG: Mr. Niels Wächter; TU Braunschweig: Prof. Dr.-Ing. Georg-Peter Ostermeyer

Development of novel brake pad material concepts for future (electric) assembly matrices

EB2022-MDS-004 • Oral • EuroBrake 2022 • Brake testing & development: future trends and perspectives

DOWNLOAD PAPER PDF
DOWNLOAD POSTER PDF
DOWNLOAD SLIDES PDF

Sign up or login to the ICC to download this item and access the entire FISITA library.

Upgrade your ICC subscription to access all Library items.

Congratulations! Your ICC subscription gives you complete access to the FISITA Library.

BUY NOW

Retrieving info...

Available for purchase on the FISITA Store

OR

bottom of page