Politecnico di Milano

Politecnico di Milano

Italy

Non-Member

SEND EMAIL
CALL

Politecnico di Milano is a scientific-technological university which trains engineers, architects and industrial designers.


The University has always focused on the quality and innovation of its teaching and research, developing a fruitful relationship with business and productive world by means of experimental research and technological transfer.


Research has always been linked to didactics and it is a priority commitment which has allowed Politecnico Milano to achieve high quality results at an international level as to join the university to the business world. Research constitutes a parallel path to that formed by cooperation and alliances with the industrial system.


Knowing the world in which you are going to work is a vital requirement for training students. By referring back to the needs of the industrial world and public administration, research is facilitated in following new paths and dealing with the need for constant and rapid innovation. The alliance with the industrial world, in many cases favored by Fondazione Politecnico and by consortiums to which Politecnico belong, allows the university to follow the vocation of the territories in which it operates and to be a stimulus for their development.


The challenge which is being met today projects this tradition which is strongly rooted in the territory beyond the borders of the country, in a relationship which is developing first of all at the European level with the objective of contributing to the creation of a single professional training market. Politecnico takes part in several research, sites and training projects collaborating with the most qualified European universities. Politecnico's contribution is increasingly being extended to other countries: from North America to Southeast Asia to Eastern Europe. Today the drive to internationalization sees Politecnico Milano taking part into the European and world network of leading technical universities and it offers several courses beside many which are entirely taught in English.

SEE MORE

Representative

SEE MORE

See Politecnico di Milano news on FISITA Spotlight

Congress: Improvement of the AEB activation algorithm based on the pedestrian reaction

Using virtual reality techniques to predict vulnerable road user behavioral patterns for autonomous emergency braking systems

12 Aug 2021

Brake Actuation and Foundation Trends Driven by Electrification and Autonomous Driving

Patricio Barbale to present Brake Actuation and Foundation Trends Driven by Electrification and Autonomous Driving at EuroBrake 2021

28 Apr 2021

See FISITA Library items from Politecnico di Milano

EB2021-STP-012

Paper + Video + Slides

Detail

Dr. Federico Bertasi, Brembo S.p.A., ITALY

Dr. Marco Bandiera, Brembo S.p.A., ITALY

Dr. Alessandro Mancini, Brembo S.p.A., ITALY

Dr. Arianna Pavesi, Brembo S.p.A., ITALY

Dr. Andrea Bonfanti, Brembo S.p.A., ITALY

Prof. Massimiliano Bestetti, Politecnico di Milano, ITALY


Anodization plays a pivotal role in improving the corrosion resistance of Aluminum-Silicon alloys (AlSix) used in the production of brake calipers.[1] However, the presence of eutectic Silicon particles within the Al matrix can reduce the oxide layer growing rate, leading to inhomogeneous and porous coatings. Following this, tailored current/potential anodization waveforms have been developed, in order to overcome the presence of Silicon, thus obtaining anodic layers with enhanced morphological and corrosion-resistance features.[2][3]


In this scenario, a fervent lab-scale R&D activity has been carried out regarding the optimization of pulsed anodization in terms of current density and frequency of the used square wave, obtaining: 1) coated AlSix specimens (30cm2) showing a superior corrosion resistance; and 2) a set of refined anodization parameters to be used to treat AlSix –based materials.[4] Unfortunately, anodization of a prototype caliper, using the obtained optimized waveforms, is not straightforward and appears particularly more challenging with respect to the lab-scale treatment of small specimens. Indeed, the presence of: a) non-uniform Silicon distribution (machined vs. non-machined regions); and b) shielded areas and/or sharp edges; can strongly influence the oxide growth, leading to inhomogeneous coatings and a morphology-dependent corrosion resistance.


As a further step toward the implementation of the optimized parameters in an anodization pilot p